-y, -z; (iii) -0.5 - x, -0.5 + y, 1-z]. These contacts are longer but stabilize the crystal packing (Fig. 2).

Least-squares-planes calculations (XANADU; Roberts & Sheldrick, 1975) show that the fivemembered ring has an envelope conformation with C(2) 0.60 (1) Å out of the plane defined by the other four atoms C(1), C(3), C(4) and C(5). The angle between the normals to the carboxylic group and to the planar part of the five-membered ring is 53 (1)°, slightly different from the value observed in camphoric acid [40.4 (4)°] (Barnes, Paton, Blyth & Howie, 1991).

The CH<sub>3</sub>—S— substituted phenyl ring is planar to within experimental accuracy ( $\sigma = 0.01$  Å) and is inclined 64 (1)° to the cyclopentane ring. It is on the same side as the carboxylic plane with respect to the five-membered ring.

The Newman projections along the C(1)—C(2)and C(2)—C(3) bonds show a staggered conformation and the (1R,3S) configuration (Fig. 3). The Friedel–Crafts reaction does not change the absolute configuration of native camphoric acid.

#### References

- ALLEN, F. H., KENNARD, O., WATSON, D. G., BRAMMER, L., ORPEN, A. G. & TAYLOR, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- BARNES, J. C., PATON, J. D., BLYTH, C. S. & HOWIE R. A. (1991). Acta Cryst. C47, 1888-1892.
- CHEVALLET, P. & ORZALESI, H. (1984). Bull. Soc. Chim. Fr. 5-6, 217-225.
- DUCHAMP, D. J. & MARSH, R. E. (1969). Acta Cryst. B25, 5-19.
- FITZGERALD, L. J., GALLUCCI, J. C. & GERKIN, R. E. (1991). Acta Cryst. B47, 776-782.
- GLUSKER, J., ZACHARIAS, D. E. & CARRELL, H. L. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 68-74.
- LEISEROWITZ, L. (1976). Acta Cryst. B32, 775-802.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- ROBERTS, P. & SHELDRICK, G. M. (1975). XANADU. Program for crystallographic calculations. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- TEROL, A., PAUVERT, B., BOUASSAB, A., CHEVALLET, P. & CASSA-NAS, G. (1992). *Thermochim. Acta*. In the press.

Acta Cryst. (1992). C48, 2177-2181

## Structures of Three Tricyclic *y*-Lactams

BY DRAKE S. EGGLESTON\* AND PAUL W. BAURES

Department of Physical and Structural Chemistry, SmithKline Beecham Pharmaceuticals, Box 1539, L-950, King of Prussia, PA 19406, USA

### URSZULA GRABOWSKA AND CHARLES M. MARSON

Department of Chemistry, The University, Sheffield S3 7HF, England

## AND TIMOTHY WALSGROVE

SmithKline Beecham Pharmaceuticals, Old Powder Mills nr Leigh, Tonbridge, Kent TN11 9AN, England

(Received 15 October 1991; accepted 10 March 1992)

Abstract. Synthetic  $\gamma$ -lactams formed in acidic media: (I)  $(3\alpha\alpha,4\alpha,8b\alpha)$ -3,3a,4,8b-tetrahydro-4methylindano[1,2-*b*]pyrrol-2(1*H*)-one, C<sub>12</sub>H<sub>13</sub>NO, *M<sub>r</sub>* = 187.24, monoclinic, *P*2<sub>1</sub>/*c*, *a* = 14.589 (2), *b* = 8.330 (3), *c* = 8.186 (4) Å,  $\beta$  = 103.17 (2)°, *V* = 968.6 (5) Å<sup>3</sup>, *Z* = 4, *D<sub>x</sub>* = 1.284 g cm<sup>-3</sup>,  $\lambda$ (Mo *K* $\alpha$ ) = 0.71073 Å,  $\mu$  = 0.764 cm<sup>-1</sup>, *F*(000) = 400, *T* = 173 K, final *R* = 0.055 for 1880 unique observations,  $l \ge 3\sigma(l)$ ; (II) (3 $\alpha\alpha,4\alpha,8b\alpha$ )-1-benzyl-3,3a,4,8btetrahydro-4-methylindano[1,2-*b*]pyrrol-2(1*H*)-one, C<sub>19</sub>H<sub>19</sub>NO,  $M_r = 277.37$ , orthorhombic,  $P2_12_12_1$ , a = 9.100 (3), b = 9.678 (4), c = 17.360 (2) Å, V = 1528.8 (5) Å<sup>3</sup>, Z = 4,  $D_x = 1.205$  g cm<sup>-3</sup>,  $\lambda$ (Cu K $\alpha$ ) = 1.5406 Å,  $\mu = 5.416$  cm<sup>-1</sup>, F(000) = 592, T = 295 K, final R = 0.049 for 729 observations,  $I \ge 3\sigma(I)$ ; (III) ( $3a\alpha, 5\alpha, 9b\alpha$ )-2,3,3a, 4, 5, 9b-hexahydro-5-methylnaphtho[1,2-b]pyrrol-2(1H)-one, C<sub>13</sub>H<sub>15</sub>NO,  $M_r = 201.27$ , monoclinic,  $P2_1/n$ , a = 8.121 (5), b = 16.257 (4), c = 8.686 (2) Å,  $\beta = 107.65$  (2)°, V = 1092.7 (7) Å<sup>3</sup>, Z = 4,  $D_x = 1.223$  g cm<sup>-3</sup>,  $\lambda$ (Mo K $\alpha$ ) = 0.71073 Å,  $\mu = 0.721$  cm<sup>-1</sup>, F(000) = 432, T = 295 K, final R = 0.046 for 1522 unique observations,

© 1992 International Union of Crystallography

<sup>\*</sup> Author to whom correspondence should be addressed.

Table 1. Crystal, intensity measurement and refinement data for (I), (II) and (III)

|                                    | (I)                          | (II)                           | (III)                        |
|------------------------------------|------------------------------|--------------------------------|------------------------------|
| Crystal size (mm)                  | 0.70 × 0.70 × 0.20           | $0.30 \times 0.15 \times 0.20$ | 0.30 × 0.40 × 0.50           |
| Crystal shape, color               | Tabloid, colorless           | Acicular, colorless            | Tabloid, colorless           |
| Radiation                          | Μο Κα                        | Cu Kα                          | Μο Κα                        |
| Range of data                      | $2\theta_{max} = 56^{\circ}$ | $2\theta_{max} = 120^{\circ}$  | $2\theta_{max} = 56^{\circ}$ |
|                                    | $0 \le h \le 10$             | $0 \le h \le 10$               | $0 \le h \le 10$             |
|                                    | $0 \le k \le 11$             | $0 \le k \le 10$               | $0 \le k \le 21$             |
|                                    | -19≤ <i>l</i> ≤19            | $0 \le l \le 19$               | $-11 \le l \le 11$           |
| No. of reflections collected       | 2505                         | 1329                           | 2798                         |
| No. of unique reflections          | 2342                         | 1329                           | 2626                         |
| Rint                               | 0.011                        | _                              | 0.012                        |
| Observed data $[I \ge 3\sigma(I)]$ | 1880                         | 729                            | 1522                         |
| Variables                          | 166                          | 190                            | 196                          |
| R                                  | 0.0552                       | 0.0492                         | 0.0460                       |
| wR                                 | 0.0712                       | 0.0531                         | 0.0503                       |
| S                                  | 2.141                        | 1.503                          | 2.280                        |
| Absorption correction              | -                            | 0.894 minimum, 1.135 maximum   | -                            |

 $I \ge 3\sigma(I)$ . The lactam ring fusion in all molecules is cis. The methyl substituent lies on the convex face of the tricyclic systems, syn to the ring junction H atoms. Both five-membered rings in (I) and (II) adopt sofa conformations while in (III) the lactam ring adopts a sofa conformation and the cyclohexene ring adopts a distorted half-chair form. In the structures of (I) and (III) intermolecular hydrogen bonds are formed with N…O separations of 2.87–2.88 Å.

Introduction. We recently reported the first examples of  $\gamma$ -lactams prepared by formal insertions of the C atom of an aldehyde between the terminal atoms N and C4 of 3-alkenamides (Marson, Grabowska, Walsgrove, Eggleston & Baures, 1991). Crystal structure determinations of the lactams (I), (II) and (III) were undertaken to establish unambiguously the relative configurations of the lactams obtained by unprecedented condensation reactions effected in polyphosphoric acid (PPA), for lactams (I) and (III), and polyphosphoric ester (PPE) for lactam (II).



Condensation of (E)-3-pentenamide with benzaldehyde in PPA at 308 K afforded the tricyclic lactam (I), the only stereoisomer detected. In contrast, reaction of (E)-3-hexenamide with benzaldehyde in PPA afforded a mixture of tricyclic lactams, epimeric at the C atom bearing a methyl group. Recrystallization of the reaction mixture from benzene afforded a pure diastereoisomer, (III), for which the configuration of the methyl group relative to the ring junction matched that of (I). Condensation of N-benzyl-(E)-3pentenamide with benzaldehyde in PPE at 333 K afforded lactam (II), the only stereoisomer detected.

The  $\gamma$ -lactam ring of all three amides is apparently formed prior to an intramolecular Friedel-Crafts

alkylation. Although other acid-catalyzed cyclizations afforded pyrrolidinones (Ben-Ishai, 1980; Tamura, Maeda, Akai, Ishiyama & Ishibashi, 1981), the pathways differ and the assembly of three contiguous stereogenic centers and three fused rings as for these lactams did not arise.

Experimental. Crystals of (I), (II) and (III) used for the diffraction experiments were grown by slow evaporation from ethyl acetate, diethyl ether and benzene, respectively. Crystal, intensity measurement and refinement data are presented in Table 1. Lattice parameters were determined from a least-squares analysis of the setting angles for 25 reflections in the range  $30 \le 2\theta \le 35^{\circ}$  (for Mo radiation) or 60–70° (for Cu radiation), as measured on an Enraf-Nonius CAD-4 diffractometer. Final diffractometer data were collected using variable-speed  $\omega - 2\theta$  scans, where the final collection speed was determined from the intensity observed in a short prescan of each reflection and the scans were extended by 25% on each side of the predicted peak to collect estimates of background intensity. Data were corrected for background as well as Lorentz and polarization effects. For (I), three standards  $(\overline{5}44, 2\overline{61}, \overline{247})$  measured at the beginning, end and every 3 h of exposure time showed no systematic deviations (maximum change  $\pm 1.1\%$ ). For (II), three standards (144,  $\overline{334}$ ,  $4\overline{21}$ ) measured nine times during data collection showed a maximum increase of 3.6%. A correction (maximum 1.030, minimum 0.9198) was applied to these data. For (III), three standards  $(\overline{2},\overline{3},\overline{13}, 41\overline{8}, \overline{1},\overline{2},\overline{12})$ showed no systematic deviations (maximum change  $\pm$  1.3%). Symmetry-equivalent data within the quadrants collected for (I) and (III) were averaged. Data for (II) were corrected for absorption using the DIFABS algorithm (Walker & Stuart, 1983). No attempt was made to assign an absolute configuration for the data crystal of (II); the compound apparently crystallized as a conglomerate since the bulk material displays no optical activity.

The structures were solved using SHELXS (Sheldrick, 1985) and refined by full-matrix least-

(I)

02 N1

C2 C3

C3a

C4a

C4 C5

C6

C7 C8

C8a

C8b C9

(II)

02 N1

C2

C3 C3a

C4

C4a C5

C6 C7

C8

C8a C8b

C9

C10 C11

C12

C13 C14

C15

C16 (III)

02 N1

C2 C3 C3a C4 C5a

C5 C6 C7

C8 C9a

С9 С9Ь

C10

squares techniques where the function minimized was  $\sum w(|F_o| - |F_c|)^2$ . Non-H atoms were refined with anisotropic displacement parameters. For (I) and (III), H-atom positions were located from difference Fourier maps and were refined; isotropic temperature factors for H atoms were assigned values of  $1.3(B_{iso})$  of the attached atom and held fixed for (I), but were refined for (III). For (II), the H-atom positions were assigned based on geometrical considerations and held fixed along with fixed isotropic temperature factors. For all three structures, weights were assigned to the data as w = $4F_o^2/s^2(I)$  with  $s^2(I) = \sigma^2(I_c) + [p(F_o)^2]^2$ ; p = 0.05 for (I) and (III) and 0.03 for (II). Refinements converged (maximum  $\Delta/\sigma = 0.05$ ) to values of the standard crystallographic residuals listed in Table 1. Final difference Fourier maps were featureless with maximum features of  $\pm 0.375$ ,  $\pm 0.158$  and  $\pm 0.209$  e Å<sup>-3</sup> for (I), (II) and (III), respectively. Values of the neutral-atom scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV) as incorporated in the Enraf-Nonius SDP (Frenz, 1987), a locally modified version of which was the source of all programs. For (I), refinement using all 2161 data not flagged as weak in a prescan gave R = 0.061, wR = 0.073; for (II), using 1131 data gave R = 0.088, wR = 0.074, and for (III), using 2171 data gave R = 0.066, wR = 0.053. There were 181 data flagged as weak in a prescan for (I), 312 for (II) and 255 such data for (III).

Discussion. Final atomic positional parameters and equivalent isotropic thermal factors for the non-H atoms are given in Table 2.\* Principal bond distances and angles for all molecules are found in Table 3. Normal values for the types of bonds involved are observed in all structures. A slight asymmetry  $(1.3^{\circ})$ in exocyclic bond angles about C(2) in (I) is noted, whereas for both (II) and (III) the O(2)—C(2)—N(1)and O(2)-C(2)-C(3) angles are equivalent. For (I), the structure determination establishes that the  $\gamma$ -lactam-indano ring fusion is cis [H(4)-C(3a)-C(8b)—H(5) torsion of 18 (2)°] and that the methyl group at C(4) is syn to the ring-junction H atoms, residing on the convex face of the tricyclic system, as seen in Fig. 1. Both five-membered rings adopt sofa conformations with atom C(3a) out-of-plane in both rings. The dihedral angle between the planes defined by atoms C(4), C(4a), C(8a) and C(8b), and atoms C(8b), N(1), C(2) and C(3), is 64.6 (2)°.

Table 2. Positional parameters and equivalent isotropic thermal factors (Å<sup>2</sup>) for (I), (II) and (III)

| x         y         z $B_{eq}$ 0.02051 (8)         0.2193 (2)         0.3382 (1)         2.42 (2)           0.08529 (9)         0.1000 (2)         0.1403 (2)         1.70 (3)           0.1235 (1)         -0.0160 (2)         0.4042 (2)         2.34 (3)           0.1382 (1)         -0.0885 (2)         0.3012 (2)         1.82 (3)           0.3088 (1)         0.0199 (2)         0.1736 (2)         1.70 (3)           0.2901 (1)         -0.0266 (2)         0.3427 (2)         1.81 (3)           0.3928 (1)         0.0659 (2)         0.1337 (2)         2.16 (3)           0.3929 (1)         0.1042 (2)         -0.0312 (2)         2.37 (3)           0.3107 (1)         0.0949 (2)         -0.1556 (2)         2.29 (3)           0.2269 (1)         0.0122 (2)         0.0485 (2)         1.58 (3)           0.1445 (1)         -0.0360 (2)         0.1187 (2)         1.63 (3)           0.3619 (1)         -0.1341 (2)         0.4488 (2)         2.84 (4)           0.4105 (5)         0.8495 (5)         0.8972 (2)         6.7 (1)           0.2219 (5)         0.8970 (4)         0.9808 (3)         4.4 (1)           0.3088 (7)         0.9226 (6)         0.9133 (3)         5.1 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\boldsymbol{B}_{\rm eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_j^*\mathbf{a}_i\cdot\mathbf{a}_j.$ |                        |                        |                    |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------|------------------------|--------------------|--|--|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x                                                                                                 | у                      | Z                      | $B_{eq}$           |  |  |
| $\begin{array}{c ccccc} 0.05229 & (9) & 0.1000 & (2) & 0.1403 & (2) & 1.70 & (2) \\ 0.0704 & (1) & 0.1156 & (2) & 0.2948 & (2) & 1.74 & (3) \\ 0.1235 & (1) & -0.0160 & (2) & 0.4042 & (2) & 2.34 & (3) \\ 0.3088 & (1) & 0.0199 & (2) & 0.1736 & (2) & 1.70 & (3) \\ 0.2901 & (1) & -0.0206 & (2) & 0.3427 & (2) & 1.81 & (3) \\ 0.3928 & (1) & 0.0659 & (2) & 0.1337 & (2) & 2.16 & (3) \\ 0.3929 & (1) & 0.0494 & (2) & -0.0312 & (2) & 2.37 & (3) \\ 0.3107 & (1) & 0.0949 & (2) & -0.1556 & (2) & 2.29 & (3) \\ 0.2267 & (1) & 0.0493 & (2) & -0.1174 & (2) & 1.95 & (3) \\ 0.2269 & (1) & 0.0122 & (2) & 0.0485 & (2) & 1.58 & (3) \\ 0.1445 & (1) & -0.0360 & (2) & 0.1187 & (2) & 1.63 & (3) \\ 0.3619 & (1) & -0.1341 & (2) & 0.4488 & (2) & 2.84 & (4) \\ \hline \\ 0.4105 & (5) & 0.8495 & (5) & 0.8972 & (2) & 6.7 & (1) \\ 0.2219 & (5) & 0.8970 & (4) & 0.9808 & (2) & 4.4 & (1) \\ 0.3088 & (7) & 0.9226 & (6) & 0.9193 & (3) & 5.1 & (2) \\ 0.2526 & (7) & 1.0526 & (6) & 0.9754 & (4) & 5.8 & (2) \\ 0.1451 & (7) & 1.170 & (6) & 0.9375 & (3) & 4.8 & (1) \\ 0.2166 & (7) & 1.2233 & (6) & 0.9922 & (4) & 5.7 & (2) \\ 0.1583 & (7) & 1.1848 & (5) & 1.0708 & (3) & 4.6 & (1) \\ 0.1626 & (8) & 1.2613 & (7) & 1.1399 & (3) & 6.9 & (2) \\ 0.1019 & (9) & 1.2014 & (7) & 1.2038 & (3) & 7.0 & (2) \\ 0.0322 & (7) & 0.9971 & (6) & 1.1359 & (3) & 5.6 & (2) \\ 0.0322 & (7) & 0.9971 & (6) & 1.1359 & (3) & 5.6 & (2) \\ 0.0322 & (7) & 0.9961 & (5) & 0.9897 & (3) & 4.3 & (1) \\ 0.1066 & (7) & 0.9961 & (5) & 0.9897 & (3) & 4.3 & (1) \\ 0.2702 & (8) & 0.6767 & (6) & 1.1536 & (3) & 6.2 & (2) \\ 0.05296 & (8) & 0.8211 & (8) & 1.1695 & (3) & 7.4 & (2) \\ 0.4469 & (7) & 0.8318 & (6) & 1.1033 & (3) & 5.8 & (2) \\ 0.4469 & (7) & 0.8318 & (6) & 1.0033 & (3) & 5.8 & (2) \\ 0.4469 & (7) & 0.8318 & (6) & 1.0333 & (3) & 5.8 & (2) \\ 0.4469 & (7) & 0.8318 & (6) & 1.0333 & (3) & 5.8 & (2) \\ 0.4469 & (7) & 0.8318 & (6) & 1.0333 & (3) & 5.8 & (2) \\ 0.4469 & (7) & 0.8318 & (6) & 1.0333 & (3) & 5.8 & (2) \\ 0.4469 & (7) & 0.8318 & (6) & 1.0333 & (3) & 5.8 & (2) \\ 0.4469 & (7) & 0.8318 & (6) & 1.0333 & (5.8 & (2) \\ 0.4469 & (7) & 0.83$       | 0.02051.(8)                                                                                       | 0.2193 (2)             | 0.3382 (1)             | 2.42 (2)           |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.08529 (9)                                                                                       | 0.1000(2)              | 0.1403 (2)             | 1.70 (2)           |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.03525(7)                                                                                        | 0.1000(2)<br>0.1156(2) | 0.2948(2)              | 1 74 (3)           |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1235 (1)                                                                                        | -0.0160(2)             | 0.4042(2)              | 2.34 (3)           |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1295 (1)                                                                                        | -0.0885(2)             | 0.3012(2)              | 1.82 (3)           |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1002(1)                                                                                         | 0.0199 (2)             | 0.1736(2)              | 1.70 (3)           |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3008 (1)                                                                                        | -0.0206(2)             | 0.3427(2)              | 1.81 (3)           |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2301 (1)                                                                                        | 0.0200 (2)             | 0.1337(2)              | 2 16 (3)           |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3920 (1)                                                                                        | 0.0037(2)              | -0.0312(2)             | 2.10(3)<br>2.37(3) |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3727(1)<br>0.2107(1)                                                                            | 0.1042(2)              | -0.1556(2)             | 2.29 (3)           |  |  |
| $\begin{array}{c ccccc} 0.2257(1) & 0.0123(2) & 0.1127(2) & 0.0485(2) & 1.58(3) \\ 0.2269(1) & -0.0360(2) & 0.1187(2) & 1.63(3) \\ 0.3619(1) & -0.1341(2) & 0.4488(2) & 2.84(4) \\ \hline \\ 0.4105(5) & 0.8495(5) & 0.8972(2) & 6.7(1) \\ 0.2219(5) & 0.8970(4) & 0.9808(2) & 4.4(1) \\ 0.3088(7) & 0.9226(6) & 0.9193(3) & 5.1(2) \\ 0.2526(7) & 1.0526(6) & 0.8794(4) & 5.8(2) \\ 0.1451(7) & 1.1170(6) & 0.9375(3) & 4.8(1) \\ 0.2166(7) & 1.2233(6) & 0.9925(4) & 5.7(2) \\ 0.1583(7) & 1.1848(5) & 1.0708(3) & 4.6(1) \\ 0.1626(8) & 1.2613(7) & 1.1399(3) & 6.9(2) \\ 0.1019(9) & 1.2014(7) & 1.2056(3) & 7.1(2) \\ 0.0332(7) & 0.9971(6) & 1.1359(3) & 5.6(2) \\ 0.0927(7) & 1.0561(6) & 1.0694(3) & 4.1(1) \\ 0.1066(7) & 0.9961(5) & 0.9897(3) & 4.3(1) \\ 0.1890(9) & 1.3723(7) & 0.9675(4) & 7.5(2) \\ 0.2252(7) & 0.7657(5) & 1.0218(3) & 4.8(1) \\ 0.3167(7) & 0.7636(5) & 1.0950(3) & 4.3(1) \\ 0.2702(8) & 0.6767(6) & 1.1536(3) & 6.2(2) \\ 0.3549(9) & 0.6648(8) & 1.2196(3) & 8.8(2) \\ 0.4849(9) & 0.7331(9) & 1.2271(3) & 7.9(2) \\ 0.5296(8) & 0.8211(8) & 1.1695(3) & 7.4(2) \\ 0.4469(7) & 0.8381(6) & 1.1033(3) & 5.8(2) \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3107 (1)                                                                                        | 0.0747(2)              | -0.1174(2)             | 1.95 (3)           |  |  |
| $\begin{array}{c ccccc} 0.2259 (1) & 0.3122 (2) & 0.3430 (2) & 1.53 (3) \\ 0.1425 (1) & -0.0360 (2) & 0.1187 (2) & 1.63 (3) \\ 0.3619 (1) & -0.1341 (2) & 0.4488 (2) & 2.84 (4) \\ \hline \\ 0.4105 (5) & 0.8970 (4) & 0.9808 (2) & 4.4 (1) \\ 0.2219 (5) & 0.8970 (4) & 0.9808 (2) & 4.4 (1) \\ 0.3088 (7) & 0.9226 (6) & 0.9193 (3) & 5.1 (2) \\ 0.2526 (7) & 1.0526 (6) & 0.8794 (4) & 5.8 (2) \\ 0.1451 (7) & 1.1170 (6) & 0.9375 (3) & 4.8 (1) \\ 0.2166 (7) & 1.2233 (6) & 0.9925 (4) & 5.7 (2) \\ 0.1583 (7) & 1.1848 (5) & 1.0708 (3) & 4.6 (1) \\ 0.1626 (8) & 1.2613 (7) & 1.1399 (3) & 6.9 (2) \\ 0.1019 (9) & 1.2014 (7) & 1.2056 (3) & 7.1 (2) \\ 0.0332 (7) & 0.9971 (6) & 1.1359 (3) & 5.6 (2) \\ 0.0927 (7) & 1.0561 (6) & 1.0694 (3) & 4.1 (1) \\ 0.1006 (7) & 0.9961 (5) & 0.9897 (3) & 4.3 (1) \\ 0.1890 (9) & 1.3723 (7) & 0.9675 (4) & 7.5 (2) \\ 0.2252 (7) & 0.7657 (5) & 1.0218 (3) & 4.8 (1) \\ 0.3167 (7) & 0.7636 (5) & 1.0950 (3) & 4.3 (1) \\ 0.2702 (8) & 0.6767 (6) & 1.1536 (3) & 6.2 (2) \\ 0.5294 (9) & 0.6848 (8) & 1.2196 (3) & 8.8 (2) \\ 0.4449 (9) & 0.7331 (9) & 1.2271 (3) & 7.9 (2) \\ 0.5296 (8) & 0.8211 (8) & 1.1695 (3) & 7.4 (2) \\ 0.4469 (7) & 0.8381 (6) & 1.1033 (3) & 5.8 (2) \\ 0.4469 (7) & 0.3512 (1) & 0.3453 (2) & 4.90 (4) \\ 0.0979 (3) & 0.1526 (1) & 0.2555 (2) & 6.31 (6) \\ 0.2795 (3) & 0.1748 (1) & 0.3606 (2) & 5.18 (5) \\ 0.7524 (3) & 0.0810 (1) & 0.8710 (3) & 5.74 (2) \\ 0.7544 (3) & 0.0852 (1) & 0.7149 (3) & 5.99 (6) \\ 0.7591 (3) & 0.0810 (1) & 0.8710 (3) & 6.70 (6) \\ 0.6133 (3) & 0.0852 (1) & 0.9175 (2) & 5.54 (5) \\ 0.7280 (2) & 0.1501 (1) & 0.5999 (2) & 4.71 (4) \\ 0.566 (3) & 0.1355 (1) & 0.4269 (2) & 5.52 (5) \\ 0.7524 (3) & 0.0810 (1) & 0.8710 (3) & 6.70 (6) \\ 0.6133 (3) & 0.0852 (1) & 0.9175 (2) & 5.54 (5) \\ 0.7724 (2) & 0.1602 (1) & 0.5112 (2) & 5.54 (5) \\ 0.7780 (2) & 0.1502 (1) & 0.5112 (2) & 5.64 (5) \\ 0.780 (2) & 0.1502 (1) & 0.5112 (2) & 5.64 (5) \\ 0.780 (2) & 0.1502 (1) & 0.5112 (2) & 5.64 (5) \\ 0.780 (2) & 0.1502 (1) & 0.5112 (2) & 5.64 (5) \\ 0.780 (2) & 0.1502 (1) & 0.5112 (2) & 5.61 (5) \\ 0.780 (2) & 0.1502 (1) & 0.5112 (2) & 5.61 (5) \\ 0.7$ | 0.2267 (1)                                                                                        | 0.0473(2)              | 0.0485 (2)             | 1.58 (3)           |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2207(1)                                                                                         | -0.0360(2)             | 0.0405(2)<br>0.1187(2) | 1.50 (3)           |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1443 (1)                                                                                        | -0.0300(2)             | 0.1107 (2)             | 2.84 (4)           |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3619 (1)                                                                                        | - 0.1341 (2)           | 0.4488 (2)             | 2.84 (4)           |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4105 (5)                                                                                        | 0.8495 (5)             | 0.8972 (2)             | 6.7 (1)            |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2219 (5)                                                                                        | 0.8970 (4)             | 0.9808 (2)             | 4.4 (1)            |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3088 (7)                                                                                        | 0.9226 (6)             | 0.9193 (3)             | 5.1 (2)            |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2526 (7)                                                                                        | 1.0526 (6)             | 0.8794 (4)             | 5.8 (2)            |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1451 (7)                                                                                        | 1.1170 (6)             | 0.9375 (3)             | 4.8 (1)            |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2166 (7)                                                                                        | 1.2233 (6)             | 0.9925 (4)             | 5.7 (2)            |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1583 (7)                                                                                        | 1.1848 (5)             | 1.0708 (3)             | 4.6 (1)            |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1626 (8)                                                                                        | 1.2613 (7)             | 1.1399 (3)             | 6.9 (2)            |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1019 (9)                                                                                        | 1.2014 (7)             | 1.2056 (3)             | 7.1 (2)            |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0386 (8)                                                                                        | 1.0715 (7)             | 1.2038 (3)             | 7.0 (2)            |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0332 (7)                                                                                        | 0.9971 (6)             | 1.1359 (3)             | 5.6 (2)            |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0927 (7)                                                                                        | 1.0561 (6)             | 1.0694 (3)             | 4.1 (1)            |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1006 (7)                                                                                        | 0.9961 (5)             | 0.9897 (3)             | 4.3 (1)            |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1890 (9)                                                                                        | 1.3723 (7)             | 0.9675 (4)             | 7.5 (2)            |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2252 (7)                                                                                        | 0.7657 (5)             | 1.0218 (3)             | 4.8 (1)            |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3167 (7)                                                                                        | 0.7636 (5)             | 1.0950 (3)             | 4.3 (1)            |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2702 (8)                                                                                        | 0.6767 (6)             | 1.1536 (3)             | 6.2 (2)            |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3549 (9)                                                                                        | 0.6648 (8)             | 1.2196 (3)             | 8.8 (2)            |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4849 (9)                                                                                        | 0.7331 (9)             | 1.2271 (3)             | 7.9 (2)            |  |  |
| 0.4469 (7)         0.8381 (6)         1.1033 (3)         5.8 (2)           -0.0772 (2)         0.03603 (9)         0.2891 (2)         5.94 (3)           0.1496 (2)         0.08343 (9)         0.4959 (2)         4.63 (3)           0.0432 (2)         0.0837 (1)         0.3453 (2)         4.90 (4)           0.0776 (3)         0.1526 (1)         0.2555 (2)         6.31 (6)           0.2795 (3)         0.1748 (1)         0.3606 (2)         5.18 (5)           0.4155 (3)         0.1257 (1)         0.3122 (2)         5.54 (5)           0.5981 (2)         0.1201 (1)         0.5999 (2)         4.71 (4)           0.5966 (3)         0.1355 (1)         0.4269 (2)         5.82 (5)           0.7524 (3)         0.0986 (1)         0.7149 (3)         5.99 (6)           0.7591 (3)         0.0810 (1)         0.8710 (3)         6.70 (6)           0.6133 (3)         0.0852 (1)         0.9175 (2)         6.54 (6)           0.4496 (2)         0.1249 (1)         0.6466 (2)         4.25 (4)           0.4593 (3)         0.1074 (1)         0.8070 (2)         5.61 (5)           0.2780 (2)         0.1502 (1)         0.512 (2)         4.59 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5296 (8)                                                                                        | 0.8211 (8)             | 1.1695 (3)             | 7.4 (2)            |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4469 (7)                                                                                        | 0.8381 (6)             | 1.1033 (3)             | 5.8 (2)            |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0772 (2)                                                                                       | 0.03603 (9)            | 0.2891 (2)             | 5.94 (3)           |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1496 (2)                                                                                        | 0.08343 (9)            | 0 4959 (2)             | 4.63 (3)           |  |  |
| 0.0422         0.1552         (1)         0.2555         (2)         6.31         (6)           0.0779         (3)         0.1526         (1)         0.3255         (2)         6.31         (6)           0.2795         (3)         0.1748         (1)         0.3606         (2)         5.18         (5)           0.4155         (3)         0.1257         (1)         0.3122         (2)         5.54         (5)           0.5981         (2)         0.1201         (1)         0.5999         (2)         4.71         (4)           0.5966         (3)         0.1355         (1)         0.4269         (2)         5.82         (5)           0.7524         (3)         0.0986         (1)         0.7149         (3)         5.99         (6)           0.6133         (3)         0.0810         (1)         0.8710         (3)         6.70         (6)           0.6133         (3)         0.0810         (1)         0.8710         (3)         6.70         (6)           0.4489         (2)         0.1249         (1)         0.6466         (2)         4.25         (4)           0.4593         (3)         0.1074         (1) </td <td>0.1470(2)</td> <td>0.0837(1)</td> <td>0.3453 (2)</td> <td>4 90 (4)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1470(2)                                                                                         | 0.0837(1)              | 0.3453 (2)             | 4 90 (4)           |  |  |
| 0.0795         0.1748         0.1026         0.1748         0.10360         (2)         5.18         (5)           0.4155         (3)         0.1257         (1)         0.3122         (2)         5.54         (5)           0.5981         (2)         0.1201         (1)         0.5999         (2)         4.71         (4)           0.5966         (3)         0.1355         (1)         0.4269         (2)         5.82         (5)           0.7524         (3)         0.0986         (1)         0.7149         (3)         5.99         (6)           0.7591         (3)         0.0810         (1)         0.8710         (3)         6.706         (6)           0.6133         (3)         0.0852         (1)         9.9175         (2)         6.54         (6)           0.4489         (2)         0.1249         (1)         0.6466         (2)         4.25         (4)           0.4593         (3)         0.1074         (1)         0.8070         (2)         5.61         (5)           0.2780         (2)         0.1502         (1)         0.5312         (2)         4.59         (4)           0.6762         (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0452 (2)                                                                                        | 0.1526(1)              | 0.2555 (2)             | 6.31 (6)           |  |  |
| 0.4155 (3) 0.1257 (1) 0.3122 (2) 5.54 (5)<br>0.5981 (2) 0.1201 (1) 0.5999 (2) 4.71 (4)<br>0.5966 (3) 0.1355 (1) 0.4269 (2) 5.82 (5)<br>0.7524 (3) 0.0986 (1) 0.7149 (3) 5.99 (6)<br>0.7591 (3) 0.0810 (1) 0.8710 (3) 6.70 (6)<br>0.6133 (3) 0.0852 (1) 0.9175 (2) 6.54 (6)<br>0.4489 (2) 0.1249 (1) 0.6466 (2) 4.25 (4)<br>0.4593 (3) 0.1074 (1) 0.8070 (2) 5.61 (5)<br>0.2780 (2) 0.1502 (1) 0.5312 (2) 4.59 (4)<br>0.662 (3) 0.2184 (2) 0.4089 (3) 7.92 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2795 (3)                                                                                        | 0.1748 (1)             | 0.3606 (2)             | 5.18 (5)           |  |  |
| 0.15981 (2)         0.1201 (1)         0.5999 (2)         4.71 (4)           0.5986 (3)         0.1355 (1)         0.4269 (2)         5.82 (5)           0.7524 (3)         0.0986 (1)         0.7149 (3)         5.99 (6)           0.7591 (3)         0.0810 (1)         0.8710 (3)         6.70 (6)           0.6133 (3)         0.0852 (1)         0.9175 (2)         6.54 (6)           0.4489 (2)         0.1249 (1)         0.6466 (2)         4.25 (4)           0.4593 (3)         0.1074 (1)         0.8070 (2)         5.61 (5)           0.2780 (2)         0.1502 (1)         0.5312 (2)         4.59 (4)           0.6762 (3)         0.2184 (2)         0.4089 (3)         7.92 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4155 (3)                                                                                        | 0.1257(1)              | 0.3122(2)              | 5.54 (5)           |  |  |
| 0.5966 (3) 0.1355 (1) 0.4269 (2) 5.82 (5)<br>0.7524 (3) 0.0986 (1) 0.7149 (3) 5.99 (6)<br>0.6739 (3) 0.0810 (1) 0.8710 (3) 6.70 (6)<br>0.6133 (3) 0.0852 (1) 0.9175 (2) 6.54 (6)<br>0.4489 (2) 0.1249 (1) 0.6466 (2) 4.25 (4)<br>0.4593 (3) 0.1074 (1) 0.8070 (2) 5.61 (5)<br>0.2780 (2) 0.1502 (1) 0.5312 (2) 4.59 (4)<br>0.6762 (3) 0.2184 (2) 0.4089 (3) 7.92 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5981 (2)                                                                                        | 0.1201(1)              | 0 5999 (2)             | 4.71 (4)           |  |  |
| 0.7524 (3) 0.0986 (1) 0.7149 (3) 5.99 (6)<br>0.7591 (3) 0.0986 (1) 0.8710 (3) 6.70 (6)<br>0.6133 (3) 0.0852 (1) 0.9175 (2) 6.54 (6)<br>0.4489 (2) 0.1249 (1) 0.6466 (2) 4.25 (4)<br>0.4593 (3) 0.1074 (1) 0.8070 (2) 5.61 (5)<br>0.2780 (2) 0.1502 (1) 0.5312 (2) 4.59 (4)<br>0.6662 (3) 0.2184 (2) 0.4089 (3) 7.92 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 5966 (3)                                                                                        | 0.1355 (1)             | 0.4269 (2)             | 5.82 (5)           |  |  |
| 0.7591 (3) 0.0810 (1) 0.8710 (3) 6.70 (6)<br>0.6133 (3) 0.0852 (1) 0.9175 (2) 6.54 (6)<br>0.4489 (2) 0.1249 (1) 0.6466 (2) 4.25 (4)<br>0.4593 (3) 0.1074 (1) 0.8070 (2) 5.61 (5)<br>0.2780 (2) 0.1502 (1) 0.5312 (2) 4.59 (4)<br>0.6762 (3) 0.2184 (2) 0.4089 (3) 7.92 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7524(3)                                                                                         | 0.0986 (1)             | 0.7149 (3)             | 5.99 (6)           |  |  |
| 0.6133 (3) 0.0852 (1) 0.9175 (2) 6.54 (6)<br>0.4489 (2) 0.1249 (1) 0.6466 (2) 4.25 (4)<br>0.4593 (3) 0.1074 (1) 0.8070 (2) 5.61 (5)<br>0.2780 (2) 0.1502 (1) 0.5312 (2) 4.59 (4)<br>0.6762 (3) 0.2184 (2) 0.4089 (3) 7.92 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7591 (3)                                                                                        | 0.0810(1)              | 0.8710 (3)             | 6,70 (6)           |  |  |
| 0.4489 (2) 0.1249 (1) 0.6466 (2) 4.25 (4)<br>0.4593 (3) 0.1074 (1) 0.8070 (2) 5.61 (5)<br>0.2780 (2) 0.1502 (1) 0.5312 (2) 4.59 (4)<br>0.6762 (3) 0.2184 (2) 0.4089 (3) 7.92 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6133 (3)                                                                                        | 0.0852 (1)             | 0.9175 (2)             | 6.54 (6)           |  |  |
| 0.4593 (3) 0.1074 (1) 0.8070 (2) 5.61 (5)<br>0.2780 (2) 0.1502 (1) 0.5312 (2) 4.59 (4)<br>0.6762 (3) 0.2184 (2) 0.4089 (3) 7.92 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4489(2)                                                                                         | 0.1249 (1)             | 0.6466 (2)             | 4.25 (4)           |  |  |
| 0.2780 (2) 0.1502 (1) 0.5312 (2) 4.59 (4)<br>0.6762 (3) 0.2184 (2) 0.4089 (3) 7.92 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 4593 (3)                                                                                        | 0.1074 (1)             | 0.8070 (2)             | 5.61 (5)           |  |  |
| 0.6762 (3) 0.2184 (2) 0.4089 (3) 7.92 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2780 (2)                                                                                        | 0.1502 (1)             | 0.5312 (2)             | 4.59 (4)           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6762 (3)                                                                                        | 0.2184 (2)             | 0.4089 (3)             | 7.92 (6)           |  |  |



Fig. 1. ORTEPII (Johnson, 1976) view of (I) with non-H atoms as principal ellipses at the 50% probability level; H atoms as small spheres of arbitrary size.

<sup>\*</sup> Lists of structure factors, anisotropic thermal parameters, H-atom parameters, and bond distances and angles involving H atoms, have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55294 (46 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: GR0201]

# Table 3. Principal bond distances (Å) and angles (°) for (I), (II) and (III)

| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O2-C2<br>N1-C2<br>N1-C8b<br>C2-C3<br>C3-C3a<br>C3a-C4<br>C3a-C4<br>C3a-C8b<br>C4a-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.233 (1)<br>1.338 (1)<br>1.460 (1)<br>1.512 (2)<br>1.526 (2)<br>1.554 (2)<br>1.548 (2)<br>1.509 (2)                                                                                                         | C4a-C5<br>C4a-C5a<br>C4-C9<br>C5-C6<br>C6-C7<br>C7-C8<br>C8-C8a<br>C8a-C8b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.391 (2)<br>1.387 (2)<br>1.527 (2)<br>1.388 (2)<br>1.387 (2)<br>1.384 (2)<br>1.392 (2)<br>1.500 (1)                                                                               |
| $\begin{array}{c} C2-N1-C8b\\ O2-C2-N1\\ O2-C2-C3\\ N1-C2-C3\\ C3-C3a-C4\\ C3-C3a-C4\\ C3-C3a-C4\\ C3-C3a-C8b\\ C4-C4a-C5\\ C4-C4a-C5\\ C4-C4a-C8a\\ C5-C4a-C8a\\ C3a-C4-C4a\\ C3a-C4a-C4a\\ C3a-C4a-C4a\\ C3a-C4a-C4a\\ C3a-C4a-C4a\\ C3a-C4a-C4a\\ C3a-C4a-C4a\\ C3a-C4a-C4a\\ C4a-C4a\\ C3a-C4a-C4a\\ C3a-C4a-C4a-C4a\\ C3a-C4a-C4a-C4a\\ C3a-C4a-C4a-C4a\\ C3a-C4a-C4a-C4a\\ C3a-C4a-C4a-C4a-C4a\\ C3a-C4a-C4a\\ C3a-C4a-C4a-C4a\\ C3a-C4a-C4a\\$                                                                                                 | 114.69 (9)<br>125.1 (1)<br>126.4 (1)<br>108.6 (1)<br>104.93 (9)<br>114.6 (1)<br>104.54 (9)<br>105.67 (9)<br>129.0 (1)<br>111.2 (1)<br>119.7 (1)<br>104.21 (9)                                                | C3a-C4-C9<br>C4a-C5-C6<br>C5-C6-C7<br>C6-C7-C8<br>C7-C8-C8a<br>C4a-C8a-C8b<br>C4a-C8a-C8b<br>C4a-C8a-C8b<br>N1-C8b-C3a<br>N1-C8b-C3a<br>N1-C8b-C8a<br>C3a-C8b-C8a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 113.4 (1)<br>114.6 (1)<br>119.2 (1)<br>120.6 (1)<br>120.7 (1)<br>118.4 (1)<br>111.88 (9)<br>127.6 (1)<br>103.14 (9)<br>112.74 (9)<br>104.87 (9)                                    |
| (II)<br>02-C2<br>N1-C2<br>N1-C2<br>N1-C10<br>C2-C3<br>C3-C3a<br>C3-C3a<br>C3-C4<br>C3a-C4<br>C3a-C4<br>C4-C9<br>C4-C9<br>C4a-C5<br>C4a-C8a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.226 (7)<br>1.351 (7)<br>1.470 (6)<br>1.458 (6)<br>1.525 (8)<br>1.537 (7)<br>1.534 (7)<br>1.534 (7)<br>1.506 (8)<br>1.527 (8)<br>1.411 (7)<br>1.381 (7)                                                     | C5-C6<br>C6-C7<br>C7-C8<br>C8-C8a<br>C8a-C8b<br>C10-C11<br>C11-C12<br>C11-C12<br>C11-C16<br>C12-C13<br>C13-C14<br>C14-C15<br>C15-C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.393 (8)<br>1.383 (9)<br>1.382 (8)<br>1.398 (7)<br>1.501 (7)<br>1.520 (7)<br>1.385 (7)<br>1.385 (7)<br>1.385 (7)<br>1.386 (8)<br>1.36 (1)<br>1.374 (9)<br>1.384 (8)               |
| $\begin{array}{c} C2-N1-C8b\\ C2-N1-C10\\ C8b-N1-C10\\ 02-C2-N1\\ 02-C2-C3\\ N1-C2-C3\\ C3-C3a-C3\\ C3-C3a-C4\\ C3-C3a-C4\\ C3a-C4-C4a\\ C3a-C4-C9\\ C4a-C4a-C5\\ C4a-C4a-C5\\ C4a-C4a-C5\\ C4a-C4a-C5\\ C5-C4a-C6\\ C5-C6\\ C5-C6-C7\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 113.8 (5)<br>122.3 (5)<br>122.2 (5)<br>125.7 (6)<br>108.3 (6)<br>104.5 (5)<br>114.0 (5)<br>104.3 (4)<br>104.7 (4)<br>104.1 (5)<br>115.6 (5)<br>128.9 (6)<br>111.0 (5)<br>120.1 (5)<br>120.1 (5)<br>121.7 (7) | $\begin{array}{c} C6-C7-C8\\ C7-C8-C8a\\ C4a-C8a-C8\\ C4a-C8a-C8b\\ C8-C8a-C8b\\ N1-C8b-C3a\\ N1-C8b-C3a\\ N1-C8b-C3a\\ C3a-C8b-C8a\\ C3a-C8b-C8a\\ C3a-C8b-C8a\\ C10-C11-C12\\ C10-C11-C12\\ C10-C11-C16\\ C12-C13-C14\\ C13-C14-C15\\ C14-C15-C16\\ C11-C16-C15\\ C14-C15-C16\\ C11-C16-C15\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.5 (7)<br>118.6 (6)<br>121.4 (5)<br>102.5 (5)<br>102.7 (4)<br>105.1 (5)<br>115.6 (4)<br>117.0 (6)<br>123.0 (5)<br>119.9 (6)<br>121.4 (7)<br>119.3 (7)<br>121.1 (7)<br>119.1 (6) |
| (III)<br>02C2<br>N1C2<br>N1C9b<br>C2C3<br>C3C3a<br>C3aC4<br>C3aC9b<br>C4C5<br>C5aC5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.227 (2)<br>1.331 (2)<br>1.471 (2)<br>1.507 (2)<br>1.524 (2)<br>1.521 (2)<br>1.514 (2)<br>1.514 (2)                                                                                                         | C5a—C6<br>C5a—C9a<br>C5—C10<br>C6—C7<br>C7—C8<br>C8—C9<br>C9a—C9<br>C9a—C9<br>C9a—C9b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.389 (2)<br>1.391 (2)<br>1.522 (2)<br>1.370 (2)<br>1.364 (2)<br>1.373 (2)<br>1.399 (2)<br>1.503 (2)                                                                               |
| $\begin{array}{c} C2-N1-C9b\\ 02-C2-N1\\ 02-C2-C3\\ N1-C2-C3\\ C3-C3a-C3b\\ C3-C3a-C4\\ C3-C3a-C9b\\ C4-C3a-C9b\\ C3a-C4-C5\\ C5-C5a-C6\\ C5-C5a-C6\\ C5-C5a-C9a\\ C6-C5a-C9a\\ C5-C5a-C5a\\ C5-C5a\\ C5-C5\\ C5-C5a\\ C5-C5\\ $ | 114.2 (1)<br>126.2 (1)<br>126.0 (1)<br>107.8 (1)<br>104.5 (1)<br>111.3 (1)<br>103.1 (1)<br>110.4 (1)<br>113.9 (1)<br>119.2 (2)<br>122.2 (1)<br>118.7 (1)<br>110.4 (1)                                        | $\begin{array}{c} C4-C5-C10\\ C5a-C5-C10\\ C5a-C6-C7\\ C6-C7-C8\\ C7-C8-C9\\ C5a-9a-C9\\ C5a-9a-C9\\ C5a-9a-C9b\\ C9-C9a-C9b\\ C8-C9-C9a\\ N1-C9b-C3a\\ N1-C9b-C3a\\ N1-C9b-C9a\\ C3a-C9b-C9a\\ C3a-C9b\\ C$ | 112.6 (2)<br>111.8 (1)<br>121.4 (2)<br>119.6 (2)<br>119.6 (2)<br>118.9 (1)<br>122.1 (1)<br>119.0 (1)<br>121.1 (2)<br>101.7 (1)<br>113.0 (1)<br>116.0 (1)                           |

H(3)—C(3a)—C(8b)—H(9) torsion of 22.2 (8)°. Both five-membered rings adopt sofa forms with atom C(3a) out-of-plane from the other four atoms. The dihedral angle between these ring planes is 67.5 (2)°. The benzyl group orients perpendicularly to the lactam ring, as reflected in the C(8b)—N(1)— C(10)—C(11) torsion of -97.9 (6)°, and is turned so that one of the phenyl-ring bonds nearly eclipses the N(1)—C(10) bond; the N(1)—C(10)—C(11)—C(16) torsion is only -34.8 (8)°.

For (III), the  $\gamma$ -lactam-hexahydronaphtho ring junction is also *cis* [H(4)—C(3a)—C(9b)—H(5) torsion of 38 (2)°], and the methyl at C(5) is *syn* to the ring-junction H atoms, residing on the convex face of the tricyclic ring system, as seen in Fig. 3. The



Fig. 2. View of (II) with non-H atoms as principal ellipses at the 50% probability level; H atoms as small spheres of arbitrary size.



The molecular structure of (II), as seen in Fig. 2, is virtually identical to that of (I), disregarding the benzyl group. The  $\gamma$ -lactam ring fusion is *cis* with

Fig. 3. View of (III) with non-H atoms as principal ellipses at the 50% probability level; H atoms as small spheres of arbitrary size.

 $\gamma$ -lactam ring adopts a sofa conformation in which C(3a) sits 0.462 (2) Å out-of-plane from the other four atoms. The cyclohexene ring adopts a distorted half-chair conformation with atoms C(9b), C(9a), C(5a) and C(5) virtually coplanar and atoms C(3a) and C(4) displaced by 0.136 (2) and 0.545 (2) Å, respectively, to opposite sides of the plane; the ring displacement asymmetry parameter,  $\Delta C_2$ , is 4.5°. The dihedral angle between the planes defined by atoms C(9b), C(9a), C(5a) and C(5), and atoms C(9b), N(1), C(2) and C(3), is 57.6 (1)°.



Fig. 4. Packing diagram for (I); all atoms are illustrated as spheres of arbitrary size. Hydrogen bonds are shown as dashed lines. The c axis is approximately vertical and the a axis is approximately horizontal.



Fig. 5. Packing diagram for (II); all atoms are illustrated as spheres of arbitrary size. The c axis is vertical and the a axis is horizontal.



Fig. 6. Packing diagram for (III); all atoms are illustrated as spheres of arbitrary size. Hydrogen bonds are shown as dashed lines. The a axis is approximately vertical and the c axis is horizontal.

These tricyclic lactams are apparently structurally unique as a search of the Cambridge Structural Database failed to reveal any structures containing either motif with which to compare the present results. The parent system of (III) has been prepared by a thermal rearrangement (Oppolzer, 1971) but the molecular structure was not determined crystallographically.

Figs. 4, 5 and 6 display packing diagrams for (I), (II) and (III), respectively. The crystal structures of (I) and (III) are stabilized by a single hydrogen bond each. In (I), molecules are linked in chains parallel to the c axis; in (III) amide 'dimers' are formed through crystallographic inversion centers. Metrical details for (I) are  $N(1)\cdots O(2) = 2.865(1)$  and  $H(1)\cdots O(2) =$ 1.93 (2) Å with an angle at H of 167 (3)°; for (III),  $N(1)\cdots O(2) = 2.876$  (2) and  $H(1)\cdots O(2) = 2.01$  Å with an angle at H of  $173 (2)^{\circ}$ . Numerous close contacts are observed between C and O atoms of glide-related molecules in the crystal structure of (I). The associated distances are  $C(3)\cdots O(2) = 3.364(2), C(3a)\cdots$  $C(8b)\cdots O(2) = 3.235(1)$  Å. O(2) = 3.399(1)and None of the H atoms attached to close-contact C atoms in (I) are in a proper orientation to be consistent with criteria put forth by Taylor & Kennard (1982) for hydrogen-bond formation. For (II), which lacks traditional hydrogen-bonding donors, there are four intermolecular C···O distances within 3.5 Å. Of these only the  $C(12)\cdots O(2)$  contact [3.400 (8) Å] has the H atom positioned in a geometrically reasonable orientation to constitute a C-H-O interaction. There is one close contact between C and O atoms in the crystal structure of (III),  $C(6)\cdots O(2) =$ 3.435 (2) Å, with several others in the 3.5-3.6 Å range. None of these distances are consistent with C—H···O hydrogen-bond formation.

We thank the Science and Engineering Research Council and SmithKline Beecham for a CASE award (to UG).

#### References

- BEN-ISHAI, D. (1980). J. Chem. Soc. Chem. Commun. pp. 687-688.
  FRENZ, B. A. (1987). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- MARSON, C. M., GRABOWSKA, U., WALSGROVE, T., EGGLESTON, D. S. & BAURES, P. W. (1991). J. Org. Chem. 56, 2603–2605.
- OPPOLZER, W. (1971). J. Am. Chem. Soc. 93, 3834-3835.
- SHELDRICK, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. SHELDRICK, C. KRÜGER & R. GODDARD. Oxford Univ. Press.
- TAMURA, Y., MAEDA, H., AKAI, S., ISHIYAMA, K. & ISHIBASHI, H. (1981). Tetrahedron Lett. 22, 4301–4304.
- TAYLOR, R. & KENNARD, O. (1982). J. Am. Chem. Soc. 104, 5063–5070.
- WALKER N. & STUART, D. (1983). Acta Cryst. A39, 158-166.